On the assumption of initial factorization in the master equation for weakly coupled systems II: Solvable models
نویسندگان
چکیده
We analyze some solvable models of a quantum mechanical system in interaction with a reservoir when the initial state is not factorized. We apply Nakajima– Zwanzig’s projection method by choosing a reference state of the reservoir endowed with the mixing property. In van Hove’s limit, the dynamics is described in terms of a master equation. We observe that Markovianity becomes a valid approximation for timescales that depend both on the form factors of the interaction and on the observables of the reservoir that can be measured.
منابع مشابه
On the assumption of initial factorization in the master equation for weakly coupled systems I: General framework
We analyze the dynamics of a quantum mechanical system in interaction with a reservoir when the initial state is not factorized. In the weak-coupling (van Hove) limit, the dynamics can be properly described in terms of a master equation, but a consistent application of Nakajima–Zwanzig’s projection method requires that the reference (not necessarily equilibrium) state of the reservoir be endowe...
متن کاملInert Module Extensions, Multiplicatively Closed Subsets Conserving Cyclic Submodules and Factorization in Modules
Introduction Suppose that is a commutative ring with identity, is a unitary -module and is a multiplicatively closed subset of . Factorization theory in commutative rings, which has a long history, still gets the attention of many researchers. Although at first, the focus of this theory was factorization properties of elements in integral domains, in the late nineties the theory was gener...
متن کاملOn the WZ Factorization of the Real and Integer Matrices
The textit{QIF} (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ} factorization. The WZ factorization can be faster than the textit{LU} factorization because, it performs the simultaneous evaluation of two columns or two rows. Here, we present a method for computing the real and integer textit{WZ} and textit{ZW} factoriz...
متن کاملCoupled fixed point results for weakly related mappings in partially ordered metric spaces
In the present paper, we show the existence of a coupled fixed point for a non-decreasing mapping in partially ordered complete metric space using a partial order induced by an appropriate function $phi$. We also define the concept of weakly related mappings on an ordered space. Moreover common coupled fixed points for two and three weakly related mappings are also proved in the same space.
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کامل